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ABSTRACT 

We describe a novel greedy algorithm for computing near-optimal 

DNA assembly graphs and show empirically that it runs in linear 

time, enabling almost instantaneous planning of DNA library 

sizes exceeding the capacity of today’s biochemical assembly 

methods. We compare assembly graph quality and algorithmic 

performance to the results obtained in [1], demonstrating that 

they are significantly faster to obtain and equivalent to the best 

results for DNA library assembly with intermediate reuse found in 

the literature. 

Categories and Subject Descriptors 

F.2.2 [Analysis of Algorithms and Problem Complexity]: 

Nonnumerical Algorithms and Problems – sequencing and 

scheduling, computations on discrete structures. 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

DNA assembly, combinatorial DNA libraries, gene design, 

genomic libraries, synthetic biology. 

1. INTRODUCTION 

Combinatorial DNA libraries, composed of natural and synthetic 

biological parts, can be assembled in an efficient manner. This is 

achieved by recognising that certain combinations of primitive 

and composite parts can occur multiple times within a library.  

Thus ordering the necessary assembly steps into stages so that 

these common, reusable intermediates are assembled first, in 

parallel, allows for reuse of correctly assembled composites 

between library members. 

1.1 Formal Problem Definition and Example 
Let S be a set of available DNA parts and T a set whose elements 

are ordered sequences of elements in S which constitute a DNA 

library. Define a library assembly graph (as in Figure 1) as a 

hierarchical clustering, representing the binary convergence of 

nodes in S to nodes in T.  

Given an assembly graph quality/cost function(stages,steps) that 

describes the ratio in penalties between the number of stages 

(depth of the construction graph) and number of intermediate 

steps (nodes that are neither in S nor in T), the problem is finding 

the assembly graph with optimal quality/minimal cost. In what 

follows we use the same cost function as [1] which seeks to 

minimize the number of stages and then the number of steps. 

For S={A,B,C,D,E} and T={ABE,ABDE,ACDE,ADE} Figure 2 

shows a suboptimal (2,8) and the optimal (2,7) assemblies. 

 

Figure 1: Suboptimal (left) and optimal library assembly. 

1.2 State-of-the-Art 
The authors of [1] contributed an iterative refinement algorithm 

based on dynamic programming for finding the optimal binary 

assembly tree (minimum number of stages and steps) of a single 

library sequence (‘goal-part’), with worst case O(n3) scaling 

where n is the number of subparts, and where the minimum 

number of stages is ceil(log2(n)). They extended this to multiple-

goal-parts by introducing ‘slack’ and ‘sharing’ factors that 

assemble all goal-parts by sharing nodes between trees to create a 

graph which reduces the number of steps, with O(k2nmax
2) scaling 

where k is the number of single goal-part assembly graphs 

created, nmax is the maximum number of subparts across all goal-

parts, and the minimum number of stages is ceil(log2(nmax)). In 

what follows we refer to this algorithm as A1, and our new 

algorithm as Anew. 

Greedy algorithms apply locally optimal choices at each stage to 

approximate, or even obtain, a globally optimal solution in 

reasonable time; ideally for problems exhibiting ‘optimal 

substructure’ (also necessary for dynamic programming). 
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2. ALGORITHM 
Unlike [1] we address libraries of many sequences directly. Our 

algorithm leverages the fact that all concatenation steps occur 

between a pair of adjacent parts (ordered 2-tuples of the p-tuples 

described in section 2.1). Therefore, when applied greedily to all 

sequences, each pair is mutually exclusive of any other pairs, 

either to the left or right of an occurrence that contain the 1st or 

2nd part respectively; i.e. overlapping pairs constituting a 3-tuple 

triple which cannot both be concatenated in the same stage. 

We rank concatenations using a scoring function that is simply 

the number of occurrences of that pair throughout the library, 

although other biological or manufacturing constraints could be 

taken into account by alternative scoring functions. 

2.1 DNA Library Encoding and Example 
Sequences of the DNA library to assemble are encoded in terms 

of their constituent subparts, i.e. as a list of s-tuples (or any 

hashable ordered sequence) of p-tuples of hashable objects 

representing subparts. Table 1 shows the state of the four 

sequence example library as it evolves under the optimal 

assembly plan shown in Figure 1 (sequences are shown as 

hashable Python objects conforming to this library encoding). 

Table 1: Library state and resulting steps in a run of Anew. 

Initial input After stage 1 After stage 2 
library=[ 

 ((A,),(B,),(E,)), 

 ((A,),(B,),(D,),(E,)), 

 ((A,),(C,),(D,),(E,)), 

 ((A,),(D,),(E,))] 

library=[ 

 ((A,B),(E,)), 

 ((A,B),(D,E)), 

 ((A,C),(D,E)), 

 ((A,),(D,E))] 

library=[ 

 ((A,B,E)), 

 ((A,B,D,E)), 

 ((A,C,D,E)), 

 ((A,D,E))] 

steps=[ 

 ((A,),(B,)), 

 ((D,),(E,)), 

 ((A,),(C,))] 

steps=[ 

 ((A,B),(E,)), 

 ((A,B),(D,E)), 

 ((A,C),(D,E)), 

 ((A,),(D,E))] 

steps=[] 

Note that since optimal steps were derived in stage 1, the steps 

of stage 2 are the same as the sequences in library after stage 1. 

2.2 Description 
For each stage, maps from pairs and triples to multisets, counting 

the number of times they occur in a sequence, are computed and 

from these, multimaps of pairs to containing triples and triples to 

contained pairs, are derived.  

Using the per-pair scoring function, a list of (pair, score) items is 

computed, shuffled (to randomize the order of equal scoring pairs 

in a stable sort - allowing multiple runs with different resultant 

assembly graphs) and sorted by descending score.  

For each (pair, score) a pair is added to a list of excluded pairs if 

it has a score ≤ 0 (allowing custom scoring functions to exclude 

certain pairs by design) or, if not already excluded, it is added to 

the set of steps for this stage and all other pairs that are in a triple 

with the current pair are excluded instead. If no steps were added 

in this stage then the list of stages, containing the lists of steps for 

each stage, is returned.  

Lastly, each of the highest scoring pairs that are not excluded by a 

higher scoring pair are then concatenated by seeking for 

occurrences in the sequences of the multiset mapped to that pair 

and moving elements of the right pr -tuple into the left pl-tuple, 

leaving a pair of (pl + pr)- and 0-tuples, so as to not create new 

occurrences of any pairs.  

Once all possible concatenations have been applied, all 0-tuples 

are removed and the algorithm loops. 

3. RESULTS 
We compare the performance of our algorithm to that of A1 in 

terms of assembly graph quality (smallest number of stages then 

steps, Table 2) and running time (Table 3) using the one synthetic 

and two real world libraries of [1]: a small dataset for exhaustive 

search, ‘phagemid’ and ‘iGEM-2008’ (containing 2 duplicates). 

Table 2: Quality (|stages|,|steps|) of assembly graph 

Library |size| Exhaustive 

|5| 

Phagemid 

|131| 

iGEM-2008 

|395| Algorithm 

A1 (3,11) (4,202*) (5, 808*) 

Anew 
(3,11) best 

(3,15) worst 

(4,202) or 

(4,208) † 

(5,808) best 

(6,841) worst 

* A1 values were estimated from [1] Figure 7. † Only outcomes. 

Table 2 shows that our algorithm Anew obtains the optimal 

solutions found by A1. Therefore we conclude that this greedy 

approach can optimally assemble real-world DNA libraries. 

Table 3: Running time (seconds) for subsets of iGEM-2008 

Library size 
50 100 150 200 250 300 350 395 

Algorithm 

A1 ‡ 0.1 1 45 120 290 405 620 720 

Anew mean of  

10 runs 
.007 

±10-5 

.014

±10-4 
.020

±10-5 
.027

±10-4 

.033

±10-4 
.039

±10-4 

.045

±10-4 

.053

±10-4 

‡ A1 values were estimated from [1] Supplemental Figure 1. 

Table 3 shows the running times of Anew were at least two orders 

of magnitude faster than A1 and imply that Anew scales linearly 

with the number of sequences. The implementation language, 

runtime and hardware these timings were obtained with may 

differ; we used Python running on a single i7-2670 2.2Mhz core. 

 

Figure 2: Running times of generated large-scale 

combinatorial DNA libraries for Anew (10 runs each). 

To investigate the growth of running time with library size 

further, we generated synthetic combinatorial libraries with up to 

1 million sequences and 1000 parts per sequence. Figure 2 shows 

how the running times on these synthetic libraries continue the 

trend observed in Table 3: increasing linearly with the number of 

sequences; and that |parts| per sequence has only a minor effect. 
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