
A New Algorithm for Combinatorial DNA Library Assembly
Jonathan Blakes

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK
+44 115 84 68403

jonathan.blakes@nottingham.ac.uk

Natalio Krasnogor *
School of Computer Science

University of Nottingham
Nottingham NG8 1BB, UK

+44 115 84 67592

natalio.krasnogor@nottingham.ac.uk

Ofir Raz
Department of Computer Science and Applied Math.

Weizmann Institute of Science
Rehovot 76100, Israel

+972 8 934 4506

ofir.raz@weizmann.ac.il

Ehud Shapiro *
Department of Computer Science and Applied Math.

Weizmann Institute of Science
Rehovot 76100, Israel

+972 8 934 4506

ehud.shapiro@weizmann.ac.il

ABSTRACT

We describe a novel greedy algorithm for computing near-optimal

DNA assembly graphs and show empirically that it runs in linear

time, enabling almost instantaneous planning of DNA library

sizes exceeding the capacity of today’s biochemical assembly

methods. We compare assembly graph quality and algorithmic

performance to the results obtained in [1], demonstrating that

they are significantly faster to obtain and equivalent to the best

results for DNA library assembly with intermediate reuse found in

the literature.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems – sequencing and

scheduling, computations on discrete structures.

General Terms

Algorithms, Performance, Design, Experimentation.

Keywords

DNA assembly, combinatorial DNA libraries, gene design,

genomic libraries, synthetic biology.

1. INTRODUCTION

Combinatorial DNA libraries, composed of natural and synthetic

biological parts, can be assembled in an efficient manner. This is

achieved by recognising that certain combinations of primitive

and composite parts can occur multiple times within a library.

Thus ordering the necessary assembly steps into stages so that

these common, reusable intermediates are assembled first, in

parallel, allows for reuse of correctly assembled composites

between library members.

1.1 Formal Problem Definition and Example
Let S be a set of available DNA parts and T a set whose elements

are ordered sequences of elements in S which constitute a DNA

library. Define a library assembly graph (as in Figure 1) as a

hierarchical clustering, representing the binary convergence of

nodes in S to nodes in T.

Given an assembly graph quality/cost function(stages,steps) that

describes the ratio in penalties between the number of stages

(depth of the construction graph) and number of intermediate

steps (nodes that are neither in S nor in T), the problem is finding

the assembly graph with optimal quality/minimal cost. In what

follows we use the same cost function as [1] which seeks to

minimize the number of stages and then the number of steps.

For S={A,B,C,D,E} and T={ABE,ABDE,ACDE,ADE} Figure 2

shows a suboptimal (2,8) and the optimal (2,7) assemblies.

Figure 1: Suboptimal (left) and optimal library assembly.

1.2 State-of-the-Art
The authors of [1] contributed an iterative refinement algorithm

based on dynamic programming for finding the optimal binary

assembly tree (minimum number of stages and steps) of a single

library sequence (‘goal-part’), with worst case O(n3) scaling

where n is the number of subparts, and where the minimum

number of stages is ceil(log2(n)). They extended this to multiple-

goal-parts by introducing ‘slack’ and ‘sharing’ factors that

assemble all goal-parts by sharing nodes between trees to create a

graph which reduces the number of steps, with O(k2nmax
2) scaling

where k is the number of single goal-part assembly graphs

created, nmax is the maximum number of subparts across all goal-

parts, and the minimum number of stages is ceil(log2(nmax)). In

what follows we refer to this algorithm as A1, and our new

algorithm as Anew.

Greedy algorithms apply locally optimal choices at each stage to

approximate, or even obtain, a globally optimal solution in

reasonable time; ideally for problems exhibiting ‘optimal

substructure’ (also necessary for dynamic programming).

* Corresponding authors.

Fifth International Workshop on Bio-Design Automation (IWBDA

2013), July 12–13, 2013, London, United Kingdom.

2. ALGORITHM
Unlike [1] we address libraries of many sequences directly. Our

algorithm leverages the fact that all concatenation steps occur

between a pair of adjacent parts (ordered 2-tuples of the p-tuples

described in section 2.1). Therefore, when applied greedily to all

sequences, each pair is mutually exclusive of any other pairs,

either to the left or right of an occurrence that contain the 1st or

2nd part respectively; i.e. overlapping pairs constituting a 3-tuple

triple which cannot both be concatenated in the same stage.

We rank concatenations using a scoring function that is simply

the number of occurrences of that pair throughout the library,

although other biological or manufacturing constraints could be

taken into account by alternative scoring functions.

2.1 DNA Library Encoding and Example
Sequences of the DNA library to assemble are encoded in terms

of their constituent subparts, i.e. as a list of s-tuples (or any

hashable ordered sequence) of p-tuples of hashable objects

representing subparts. Table 1 shows the state of the four

sequence example library as it evolves under the optimal

assembly plan shown in Figure 1 (sequences are shown as

hashable Python objects conforming to this library encoding).

Table 1: Library state and resulting steps in a run of Anew.

Initial input After stage 1 After stage 2
library=[

 ((A,),(B,),(E,)),

 ((A,),(B,),(D,),(E,)),

 ((A,),(C,),(D,),(E,)),

 ((A,),(D,),(E,))]

library=[

 ((A,B),(E,)),

 ((A,B),(D,E)),

 ((A,C),(D,E)),

 ((A,),(D,E))]

library=[

 ((A,B,E)),

 ((A,B,D,E)),

 ((A,C,D,E)),

 ((A,D,E))]

steps=[

 ((A,),(B,)),

 ((D,),(E,)),

 ((A,),(C,))]

steps=[

 ((A,B),(E,)),

 ((A,B),(D,E)),

 ((A,C),(D,E)),

 ((A,),(D,E))]

steps=[]

Note that since optimal steps were derived in stage 1, the steps

of stage 2 are the same as the sequences in library after stage 1.

2.2 Description
For each stage, maps from pairs and triples to multisets, counting

the number of times they occur in a sequence, are computed and

from these, multimaps of pairs to containing triples and triples to

contained pairs, are derived.

Using the per-pair scoring function, a list of (pair, score) items is

computed, shuffled (to randomize the order of equal scoring pairs

in a stable sort - allowing multiple runs with different resultant

assembly graphs) and sorted by descending score.

For each (pair, score) a pair is added to a list of excluded pairs if

it has a score ≤ 0 (allowing custom scoring functions to exclude

certain pairs by design) or, if not already excluded, it is added to

the set of steps for this stage and all other pairs that are in a triple

with the current pair are excluded instead. If no steps were added

in this stage then the list of stages, containing the lists of steps for

each stage, is returned.

Lastly, each of the highest scoring pairs that are not excluded by a

higher scoring pair are then concatenated by seeking for

occurrences in the sequences of the multiset mapped to that pair

and moving elements of the right pr -tuple into the left pl-tuple,

leaving a pair of (pl + pr)- and 0-tuples, so as to not create new

occurrences of any pairs.

Once all possible concatenations have been applied, all 0-tuples

are removed and the algorithm loops.

3. RESULTS
We compare the performance of our algorithm to that of A1 in

terms of assembly graph quality (smallest number of stages then

steps, Table 2) and running time (Table 3) using the one synthetic

and two real world libraries of [1]: a small dataset for exhaustive

search, ‘phagemid’ and ‘iGEM-2008’ (containing 2 duplicates).

Table 2: Quality (|stages|,|steps|) of assembly graph

Library |size| Exhaustive

|5|

Phagemid

|131|

iGEM-2008

|395| Algorithm

A1 (3,11) (4,202*) (5, 808*)

Anew
(3,11) best

(3,15) worst

(4,202) or

(4,208) †

(5,808) best

(6,841) worst

* A1 values were estimated from [1] Figure 7. † Only outcomes.

Table 2 shows that our algorithm Anew obtains the optimal

solutions found by A1. Therefore we conclude that this greedy

approach can optimally assemble real-world DNA libraries.

Table 3: Running time (seconds) for subsets of iGEM-2008

Library size
50 100 150 200 250 300 350 395

Algorithm

A1 ‡ 0.1 1 45 120 290 405 620 720

Anew mean of

10 runs
.007

±10-5

.014

±10-4
.020

±10-5
.027

±10-4

.033

±10-4
.039

±10-4

.045

±10-4

.053

±10-4

‡ A1 values were estimated from [1] Supplemental Figure 1.

Table 3 shows the running times of Anew were at least two orders

of magnitude faster than A1 and imply that Anew scales linearly

with the number of sequences. The implementation language,

runtime and hardware these timings were obtained with may

differ; we used Python running on a single i7-2670 2.2Mhz core.

Figure 2: Running times of generated large-scale

combinatorial DNA libraries for Anew (10 runs each).

To investigate the growth of running time with library size

further, we generated synthetic combinatorial libraries with up to

1 million sequences and 1000 parts per sequence. Figure 2 shows

how the running times on these synthetic libraries continue the

trend observed in Table 3: increasing linearly with the number of

sequences; and that |parts| per sequence has only a minor effect.

4. PROJECTS
This work was supported by CADMAD (FP7 STREP 265505),

ROADBLOCK (EP/I031642/1) and AUDACIOUS

(EP/J004111/1).

5. REFERENCES
[1] Densmore, D., Hsiau, T. H.-C., Kittleson, J. T., DeLoache,

W., Batten, C. and Anderson, J. C. 2010. Algorithms for

automated DNA assembly. Nucleic Acids Research 38, 8

(Mar. 2010), 2607-2616.

DOI=http://dx.doi.org/10.1093/nar/gkq165

http://dx.doi.org/10.1093/nar/gkq165

